
AniTMT Users Guide

Contents

1 Introduction 1

2 How can I animate a scene ? 2
2.1 Animate objects . 2
2.2 Animate values . 2

3 Preparing the scene description 2
3.1 POV �les . 2

3.1.1 Giving names to objects . 2
3.1.2 Insert variables . 3

4 De�ning the animation in the ADL �le 3
4.1 Structure and syntax . 3
4.2 Rules for naming . 5

5 Funktions 5
5.1 General . 5

5.1.1 De�ne values of properties . 5
5.1.2 De�nition by chosen properties 6
5.1.3 Value determination with neighbour elements 6
5.1.4 Setting default values . 6
5.1.5 Explicite references to other elements 6

5.2 List of Funktions . 7
5.2.1 Scalar interpolation (change) . 7
5.2.2 Movement of objects on a �ight path (move) 7

1 Introduction

Films like Toy Story and A Bug's Life showed impressively, what quality may be achieved
meanwhile by totally coputer generated �lms. To make such �lms � although in a more
modest form � is a big dream for us since we know about Raytracing.

We used the Raytracer POV-Ray for our �rst attempts. It convinced us in static
pictures but the integrated abilities for animation has been too complicated. We also
didn't �nd any other software that o�ers an appropriate solution.

For this reason we decided to develop our own animation system. We chose the name
AniTMT where TMT stands for the �rst letters of our last names.

1

2 How can I animate a scene ?

There are two component types that may be animated a 3D scene.

2.1 Animate objects

Objects can be moved on a �ight path as a union. Additionally the direction of the
object may be changed depending on the path.

To animate the whole object is always useful if you want to move it along a path of
combined track elements.

2.2 Animate values

For an interpolation of values a variable is used that is already de�ned in the scene. This
variable may be used in an expression or any where else.

Values may be used to animate properties (like the color) of an object or of the scene.
It is also useful to change the size by using a scale expression or to rotate an Object
only around one axis. The usage of a variable has to be de�ned explicitely in the scene
�le.

3 Preparing the scene description

A scene may contain di�erent components. These can be either objects that may be
moved and rotated or simple values. You have to specify the name of all components
you want to animate in the scene �le.

3.1 POV �les

Here we discribe how to de�ne components in POV-Ray scenes that may be animated.

3.1.1 Giving names to objects

In order to give names to objects that should able to be animated we use the following
syntax:

sphere { // My_Sphere <-- this is the name

< 0, 0, 0 >, 0.45

pigment { OldGold }

rotate < 0, 0, 0 >

translate < -4, 1, 1 >

}

The name of the object is inserted behind the object type (sphere), the left brace and
the double slash that indicates a comment line. This causes POV-Ray to ignore the
name. (see chapter 4.2)

2

3.1.2 Insert variables

Variables have a name in the POV-Ray syntax in any way. You have to specify a default
value in the POV �le as follows:

#declare MyVariable = 12345;

The declaration has to be terminated by a semicolon necessarily. anitmt will remove all
#declare expressions that are animated and insert a new one. That is why you should
use another variable to make a loop or something similar. This one may be initialized
by the animated variable as shown in the following example:

#declare MyStartValue = 1;

#declare MyEndValue = 9;

#declare i = MyStartValue;

#while (i <= MyEndValue)

box {

<0,0,0>, <1,1,1>

pigment { color rgb < i * 0.1, 0, 0 > }

translate i * y

}

#declare i = i + 1;

#end

If you would use MyStartValue instead of i, anitmt might remove the incrementation

#declare MyStartValue = MyStartValue + 1;

too.

4 De�ning the animation in the ADL �le

We developed a new �le format for animations scripts �animation description language�
(ADL).

4.1 Structure and syntax

The ADL �le has a hierarchy on di�erent levels. This represents the structure of scenes,
components (objects/ variables), functions and subfunctions.

3

povscene MyScene { // POV-Ray-Szene

filename "myscene.pov"; // Szenendatei

my_obj { // Name des Objektes

move { // Bewegung auf Flugbahn

straight { // Gerade zum Ursprung

startpos <-2,0,0>; // Startposition

startdir x; // Startrichtung

length 3; // Laenge in LE

startspeed 2; // Geschwindigkeit in LEs

}

circle { // 180 Grad Kurve

normal y; // X-Z Ebene

radius 2; // Radius in LE

angle 180; // Winkel in Grad

}

circle { // 130 Grad Kurve schief im Raum

center <1,1,-1>; // Rotationszentrum

angle 130; // Winkel in Grad

}

straight {} // Gerade in die Unendlichkeit

}

}

}

There are mainly two types of statements. You can open blocks whose body is enclosed
in braces and you can de�ne properties in blocks.

Blocks are introduced by a statement (for example povscene) and an optional name
(ex: MyScene) which is necessary for explicite references.

Properties consist of a statement (ex: filename) an a value (ex: "myscene.pov")
seperated by spaces and terminated by a semicolon. The statement de�nes the type of
the value that may be one of scalar, vector, string or a complete expression with these
types. Strings are enclosed in quotes and vectors look like <x,y,z>. Each block allows
only a prede�ned set of properties.

On the top level you can open scenes. The statement for POV-Ray scenes is called
povscene. All scenes need the property filename. In the scene you can add component
blocks that are introduced slightly di�erent. They don't need a statement but you have
to specify the name as de�ned in the scene �le (see chapter 3).

In the component blocks you can open function blocks. The function change for
example interpolates scalar values and the function move is used to animate objects by
combining track elements. The function de�nes the type of the component.

Subfuction blocks may be de�ned in the functions. They de�ne the real behaviour
of the component during the animation.

4

4.2 Rules for naming

In scene �les like POV-Ray�les you can specify names for objects. You can also give a
name to any block in the ADL �le in order to enable explicite references.

You have to follow some rules for these names:

• it may consist of alphanumeric characters or underscore ('_')

• it has to start with a alphabetic character

• it may have up to 100 characters

• it is case sensitive

5 Funktions

In order to animate a component you have to specify a function that de�nes how it is
animated. Each function only works with one type of components. The function move

for example tells the component that it is an object. It is useful to move an object along
a �ight path de�ned through track elements.

5.1 General

As the de�nition of an animation should be komfortable there are the following possi-
bilities to de�ne your animtaion:

5.1.1 De�ne values of properties

In the function there is a set of subfunctions that represent successive segments in time.
The behaviour of these segments is de�ned by properties.

In common the properties get a static value:

startpos < 5, 2, 3.141 >;

But it is also possible to de�ne it with an expression:

startpos (5 * x) + (2 * <0,1,0>) + <0,0,pi>;

AniTMT has mainly the same operations like POV-Ray. A detailed reference follows
soon.

5

5.1.2 De�nition by chosen properties

Every subfunction allows di�erent properties like starttime, endtime, startpos, endpos,
duration, . . .

If the value of any property is needed, all possibilities to calculate that property are
known. By a straight track for example the endposition may be calculated with the
startposition, the startdirection and the length. For all of these properties it is also
known how they might be calculated.

Though it is possible to determine only as much properties so that all other properties
may be calculated.

5.1.3 Value determination with neighbour elements

The determination of all necessary properties works on several levels. At �rst it is tried
to solve all properties as described before. If it isn't possible to calculate all of them
some values are given by neighbour elements.

To get a process without time jumps the start- and endtime of two neighboured
elements should be the same. If you de�ne a �ight path for example the positions
should be equal to avoid any jumps in space. The directions should match to avoid
sharp bends and the speeds should the same to make a good looking movement. On
each level one property is enabled to be passed to neighbour elements in the direction
discribed befor.

With this it is possible to de�ne an animation with relative changes like the duration.
Absolute values like the startime has to be de�ned on one point only.

5.1.4 Setting default values

As we want to provide both powerful and konfortable functions some properties are
de�ned by default values if they couldn't be solved. For example a konstant movement
is assumed instead of an accelerated one. This might be done by setting the acceleration
to zero. The endtime can also be determined with the total duration of the animation.

5.1.5 Explicite references to other elements

Furthermore, it is possible to set up relationships between several movements. In such
way, you can arrange for example that a missile hits an airplane at the correct time and
position. Therefor the missile de�nes it endtime and endpos as reference to the same
properties of the airplane.

It is always possible to use this reference in an expression. Like this it is very easy
to let the missile miss the plain by reaching the position some seconds later.

6

5.2 List of Funktions

5.2.1 Scalar interpolation (change)

This function is used to animate a variable that the you may use in any way in the scene.
That is useful for textures or rotations around one axis like doors.

All subfunctions have some standard properties and some additional ones. The
following may be de�ned for all subfunctions of change:

starttime Starttime in seconds
endtime Endtime in seconds
duration duration in seconds
startvalue Startvalue
endvalue Endvalue
difference Di�erance between start- and endvalue

For any scalar interpolation you may use 2 subfunctions:

• linear

• accelerated

linear The function linear is used for a konstant change of the value. The additional
properties of linear are:

slope change of the value in units per second

accelerated The function accelerated may be used for an accelerated change of a
value. The additional properties are:

startslope change of the value at the beginning in units per
second

endslope change of the value at the end in units per second
acceleration acceleration of the change in units per second

square

5.2.2 Movement of objects on a �ight path (move)

All objects have a front and up vector depending on their initial location in the scene.
These and the rotation center of an object may be speci�ed in the object like that:

povscene{

my_object{

center <1,1,1>;

front <1,0,1>;

up y;

move{...}

}

}

7

The default value for center is <0,0,0>, the one for front is x and the one for up is
z;

In order to determine the exact positon of an object we use a system that speci�es
the line of vision by two perpendicular angles and additionally an angle that de�nes the
rotaion around that direction.

An airplane for example may be rotated around the �ight path. The resulting up

vector of the object is used as normal vector of the horizontal plain. With this a hori-
zontal and vertical rotation depending on the location of the airplane may be speci�ed.
By �nally moving the object to the appropriate position, all possible locations may be
reached.

The function move is used to de�ne a �ight path with track segments like a straight
stretch or an arc of a circle. The line of vision is set tangatial to the path by default.
The initial up direction of the path may be set by default and is passed from each track
segment to the next one.

It is also possible to specify that an object isn't rotated dependant on the path (like
an ufo) by de�ning the following property in the move block:

autorotate false;

All subfunctions of move support accelerated movement and rotation around the
three axes. That is why all of them accept the following properties:
General:

starttime Starttime in seconds
endtime Endtime in seconds
duration Duration in seconds
startup Up vector at the beginning
endup Up vector at the end
up_roll Scalar that speci�es the rotation of the up vector

around the track in degrees
Movement:

startpos Startposition as vector
endpos Endposition as vector
startdir Startdirection as vector
enddir Enddirection as vector
startspeed Startspeed in units per second
endspeed Endspeed in units per second
acceleration Acceleration in units per second square

Rotation around the line of vision:
startrot_roll Startvalue in degrees
endrot_roll Endvalue in degrees
diffrot_roll Di�erance in in degrees
startrotspeed_roll Rotation speed at the beginning in degrees per sec-

ond
endrotspeed_roll Rotation speed at the end in degrees per second
rotacceleration_roll Beschleunigung der Rotation

8

Rotation in the horizontal plain:
startrotspeed_horizontal Startvalue in degrees
endrotspeed_horizontal Endvalue in degrees
diffrot_horizontal Unterschied in degrees
rotacceleration_horizontal Rotation speed at the beginning in degrees per sec-

ond
startrot_horizontal Rotation speed at the end in degrees per second
endrot_horizontal Beschleunigung der Rotation

Rotation in the vertical direction:
startrot_vertical Startvalue in degrees
endrot_vertical Endvalue in degrees
diffrot_vertical Unterschied in degrees
startrotspeed_vertical Rotation speed at the beginning in degrees per sec-

ond
endrotspeed_vertical Rotation speed at the end in degrees per second
rotacceleration_vertical Beschleunigung der Rotation

Of corse you have to specify only few properties of all these. If you don't want a rotation
you don't have to specify any. Then the angles will be set to zero by default and the
object only rotates depending on the �ight path. (see chapter 5.1.4)

The function move accepts two subfunctions at the moment:

• straight

• circle

straight The subfunction straight moves the object on a straight stretch. The only
additional property that may be speci�ed is:

length Stretch in units

circle The subfunction circle moves an object on an arc of a circle. This may be in
any plain. The follwing properties may additionally be speci�ed:

length Stretch in units
normal Normal vector of the plain of the orbit
radius Radius of the circle
center Center of the circle
angle Angle of the arc

9

	Introduction
	How can I animate a scene ?
	Animate objects
	Animate values

	Preparing the scene description
	POV files
	 Giving names to objects
	 Insert variables

	Defining the animation in the ADL file
	 Structure and syntax
	 Rules for naming

	Funktions
	 General
	 Define values of properties
	 Definition by chosen properties
	 Value determination with neighbour elements
	 Setting default values
	 Explicite references to other elements

	 List of Funktions
	 Scalar interpolation (change)
	 Movement of objects on a flight path (move)

